다채널 실시간 신경신호 기록 및 처리 시스템의 개발

김성용, 김경환, 김성준
서울대학교 공과대학 전기공학부

Development of Real Time Multi-Channel Data Acquisition and Processing System for Neural Signal

S. D. Kim, K. H. Kim and S. J. Kim
School of Electrical Engineering, College of Engineering, Seoul National University

ABSTRACT

In this paper, we describe a real-time multichannel system for acquisition and analysis of extracellular neural signal. This system enables real-time display and storage, detection and classification of the neural signal recorded with semiconductor multi-channel microelectrode array. The system consists of signal amplification and filtering part, transmission part, real-time acquisition and signal processing part including unsupervised and supervised neural spike sorting module.

I. 서론

신경신호의 계측은 신경계의 연구에 매우 중요한 역할을 한다. 최근 들어 수십, 수백 개의 채널로부터 신경신호를 측정할 수 있는 미세전극기술이 발달함에 따라 많은 신경전극부의 신호를 동시에 측정할 수 있게 되었고 이에 따라 고속신호처리와 대용량저장이가를 통하여 얻어진 데이터를 컴퓨터로 분석할 수 있는 시스템의 필요성이 더욱 커지고 있다. 또한 전체시스템을 실시간이 동작이 가능한 마이크로시스템 형태로 제작한다면 신경보철에도 이용될 수 있을 것이다.

본 연구에서 개발한 시스템은 다채널 신경신호기록용 반도체 미세전극 어레이를 통하여 다채널 세포의 신경전극(multi-channel extracellular action potential)을 계측하고 증폭하여 야간고 보낼 수 있다. 그저 데이터의 시스템(data acquisition system)에 있는 host computer로 전송한다. 데이터는 시스템은 계측된 다채널신경신호를 실시간 디스플레이하고 저장할 수 있는 기능을 갖는다. 또한, 저장된 신호를 바탕으로 자동으로 신경의 활동 전위를 찾아내어 신경 보철 분야에서 필요한 활동 전위의 분류 및 활동 전위의 시기를 기록하게 된다.

II. 방법

체계 시스템의 개요는 그림 1과 같다. 신경신호는 전처리과정을 통해 증폭되고, 이것은 주파수 분석기에서 다시 증폭되면서 필터링된다. 필터는 100Hz～15kHz의 통과대역을 갖는 대역통과필터이다. 이것은 FM Transceiver를 통해서 신호 측정 부분으로 전송된다. 신호 측정 부분에서는 신호를 A/D 변환을 통해 host PC로 전송한다. Host PC는 신호 측정보드로부터 측정된 신호를 시스템의 모니터에 실시간으로 디스플레이하고 실시간으로 하드디스크에 저장한다. 신호는 12bit의 해상도로 양화되며 각 데이터 sampling rate는 30kHz이다. 하나의 데이터 측정 보드는 최대 16개의 single ended channel 혹은 8개의 differential channel을 기록 및 처리할 수 있다. 신호 전송 보드는 host PC로의 고속의 연속적 신호전송을 위해서 double buffer direct memory access(DMA)모드로 전송한다. 이의 구현을 위해서 데이터 확득시스템은 저장 및 디스플레이를 담당하는 2개의 multithread program으로 작성 되었다.

신호처리 program module은 software filtering, spike detection, spike sorting 등의 기능을 갖는다. Software filtering 부분에서는 IIR filter와 FIR filter를 설계 및 적용할 수 있도록 되어 있으며, FIR filter는 Bartlet, Blackman, Hamming, Hanning, Kaiser, ParksMcClellan 등의 방법으로, IIR filter는 Butterworth, Chevyshev, Elliptic, Inverse-Chevyshev 등의 방법으로 설계할 수 있도록 되어있다. [1]

저장된 신경신호의 활동전위를 찾기 위해서는 신호 측정 보드에서 신호를 측정하고, 이를 전송하는 process를 통해 FIR filter로 처리한 다음, 이를 host PC로 전송한다. ardından host PC는 FIR filter를 통해 신호를 재생하였고, 이를 다시 저장하고, 마지막으로 이 저장된 신호를 다시 FIR filter를 통해 신호를 재생하였다. 이를 통해 신호 측정 보드의 성능을 확인할 수 있었다.

그림 1. 시스템의 전체 구성도

[1]
우에서는 단순한 threshold method를 이용하며, SNR이 좋지 않은 경우에는 Nonlinear Energy Operator를 이용해서 활동 전위를 찾아냅니다. [2]


III. 실험 및 결과

개발된 시스템을 이용하여 개구리의 skin sensory nerve의 활동전위를 측정하고 실시간 디스플레이 및 저장을 하는 실험을 수행하였다. 진저증후군의 이득은 50도이고, 100 Hz - 15 kHz의 대역폭과 필터를 통과시켰으며 기계적 자극을 가하면서 4 channel의 신경 신호를 기록하였다. 본 시스템에 의하여 그림 2에서와 같이 자극에 대한 개구리의 활동 전위가 실시간에 기록되고, 출력된다. 이 경우 개구리의 활동전위는 ±5mV 범위 내에서 출력이 되었다. 필요한 경우 앞에서 언급한 feature들은 소프트웨어를 이용하여 추가적으로 filtering 할 수 있다. 측정된 개구리의 활동 전위를 threshold를 이용하여 찰한 결과가 그림 3이다. 이로부터 검출단 활동전위들은 unsupervised Bayesian classifier를 이용하여 sorting 하였다. 그림 4은 channel 1의 활동 전위에 대한 sorting 결과다. 이것은 활동전위의 신호 전단을 입력으로 해서 sorting 한 결과이며, 이것은 각 channel에 대해서 sorting 된 unit별로 spike time의 형태로 저장이 된다.

IV. 결론

다채널 신경 신호를 실시간에 디스플레이, 저장하고 분석할 수 있는 시스템을 개발하였다. EEG나 ECG 등의 생체신호분석에 사용되는 보통의 상용 시스템의 사용가능성은 높다. 첫 번째 10 kHz에 이르는 주파수대역을 갖는 개구리의 skin sensory nerve로부터의 신경신호를 성공적으로 실시간 기록, 저장할 수 있었고 data에서 신경의 활동전위를 검출하고 분류할 수 있었다. 신경생리학의 연구에 널리 활용되고 있는 신경 프로그램인 Harvey Box와 비교하여 저장 속도와 출력면에서는 충분히 성능이 뛰어나며, 소프트웨어에 필터링하는 기능이 추가되어 있고, 무선으로 전송이 가능하다는 점에서 뛰어나다고 할 수 있다. 앞으로 channel의 수를 128 channel까지 확장하고, 실시간에 detection과 sorting 이 되고, 그 결과를 실시간으로 분석하는 신호처리 프로그램의 개발이 필요하다.

그림 2. 실시간 신호 획득 프로 과 그림 3과 기록된 개구리의 감각 신경 활동 전위

그림 3. threshold를 이용해서 활동 전위 detection 과 그 결과

그림 4. Detection 된 활동 전위를 unsupervised sorting 한 결과

참고 문헌

본 연구는 보건복지부에서 시행한 '98 보건 의료 기술 연구 개발 사업'의 결과입니다.